Fish species classification using a collaborative technique of firefly algorithm and neural network

Author:

Prasenan Pooja,Suriyakala Chethamangalathu Damodharaprabhu

Abstract

AbstractMonitoring various Fish Species and its distribution of the species obtains a primary significance in receiving the insights to marine ecological-system. After this, visual classification of those species would aid in tracing out the movement and yield the patterns and trends in fish activities, which provides in depth knowledge of the species. Unconstrained under-water images pose highly variations because of the fish orientation changes, Light-intensities, similarity in fish patterns and fish shapes. This would create the greater challenge for Image-processing techniques in accurate classification of Fish species or the Fish classes. Hence, for this reason, Underwater Image Enhancement is implemented in combination of Morphological-operations in pre-processing method. The pre-processed image is then subjected to feature extraction process by using Speed-up Robust Feature algorithm. This is followed by Firefly Algorithm, applied for optimization of Region of interest selection in the selected-features. For the categorization of Fish-species, PatternNet is a technique which is employed, in classifying 10,000 marine fish-images to five categories (Dascyllus reticulatus, Plectroglyphidodon dickii, Chromis chrysura, Amphiprion clarkii, and Chaetodon lunulatus). The Efficiency of the proposed-framework is performed in terms of Classification accuracy, execution time, precision value, F-measure and recall factors with respect to various categories of fish species. The comparison of the proposed-framework is also assessed with the other existing methods. 98% of accuracy rate in classification was produced by the evaluation results of the proposed framework with a lesser average computation time of 3.64 s upon different tested images. Thus, the higher efficiency of the proposed framework is proved by the outcomes of the study.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3