Abstract
AbstractTrack and field sports are known as the "mother of sports". Whether in the field of athletics, fitness, or education, modern track and field sports have developed rapidly. The field of athletics has reached the point where it challenges the limits of humans. The development of China is inseparable from the support of science and technology, and it is inseparable from human scientific research on track and field sports. In order to improve the scientific level of track and field training methods and develop our country's sports industry, this paper designs a track and field training information collection and feedback system based on multi-sensor information fusion. In the method part, this article briefly introduces the content of track and field sports, the mode of multi-sensor information fusion and the existing sports information collection system, using weight coefficient fusion method, D-S evidence theory algorithm and Kalman filter algorithm. This paper designs an information collection and feedback system based on multi-sensor information fusion, and conducts demand analysis, comparative analysis, and data record analysis on this system. By designing the experimental group and the control group, it can be seen that the average performance of the two groups of athletes in the 50-meter run in 8 weeks has improved, and the data of the experimental group and the control group show significant differences. After the experiment, the average performance of the male athletes in the control group increased from around 8.32 to around 8.12, an increase of 4.7%. The performance of male athletes in the experimental group increased from 8.37 to 7.92, an increase of 5.6%. It can also be known that before the experiment, the average performance of the athletes in the selected control group was due to the experimental group, but after 8 weeks of experiment, the increase in the experimental group was higher than that of the control group. This shows that the data collection and feedback system using multi-sensor information fusion can be more accurately and differentiatedly applied to track and field training, and can find problems in athletes, so as to prescribe the right medicine.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. M. Liu, J. Chen, X. Zhao, et al., Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine 51(17), 861–865 (2018)
2. N.H. Rijken, R. Soer, E. Maar, et al., Increasing Performance of Professional Soccer Players and Elite Track and Field Athletes with Peak Performance Training and Biofeedback: A Pilot Study. Appl Psychophysiol Biofeedback 41(4), 421–430 (2016)
3. T. Kitazawa, M. Nagai, J. Ueno, Effects of an E-Learning System with a Feedback System in Blended Learning Environments of Information and Communication Technology Education at a Japanese University. Educ Technol Res 34(1), 181–193 (2017)
4. Xiangyu, Xu, Mei et al., An Indoor Pedestrian Localization Algorithm Based on Multi-Sensor Information Fusion. J Comput Commun 05(3), 102–115 (2017)
5. B.L. Han, T. Zhang, Q.S. Luo, et al., Obstacle avoidance technology of bionic quadruped robot based on multi-sensor information fusion. J Beijing Inst Technol (English Edition) 25(4), 448–454 (2016)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献