Implementation of MapReduce parallel computing framework based on multi-data fusion sensors and GPU cluster

Author:

Chang Dajun,Li Li,Chang Ying,Qiao Zhangquan

Abstract

AbstractNowadays, with the rapid growth of data volume, massive data has become one of the factors that plague the development of enterprises. How to effectively process data and reduce the concurrency pressure of data access has become the driving force for the continuous development of big data solutions. This article mainly studies the MapReduce parallel computing framework based on multiple data fusion sensors and GPU clusters. This experimental environment uses a Hadoop fully distributed cluster environment, and the entire programming of the single-source shortest path algorithm based on MapReduce is implemented in Java language. 8 ordinary physical machines are used to build a fully distributed cluster, and the configuration environment of each node is basically the same. The MapReduce framework divides the request job into several mapping tasks and assigns them to different computing nodes. After the mapping process, a certain intermediate file that is consistent with the final file format is generated. At this time, the system will generate several reduction tasks and distribute these files to different cluster nodes for execution. This experiment will verify the changes in the running time of the PSON algorithm when the size of the test data set gradually increases while keeping the hardware level and software configuration of the Hadoop platform unchanged. When the number of computing nodes increases from 2 to 4, the running time is significantly reduced. When the number of computing nodes continues to increase, the reduction in running time will become less and less significant. The results show that NESTOR can complete the basic workflow of MapReduce, and simplifies the process of user development of GPU positive tree order, which has a significant speedup for applications with large amounts of calculations.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Streaming in Concept-Dependent Granulation;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Accelerating concept-dependent granulation technique using data decomposition;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

3. Retraction Note: Implementation of MapReduce parallel computing framework based on multi-data fusion sensors and GPU cluster;EURASIP Journal on Advances in Signal Processing;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3