Suppressing random noise in seismic signals using wavelet thresholding based on improved chaotic fruit fly optimization

Author:

Yang Feng,Liu JunORCID,Hou Qingming,Wu Lu

Abstract

AbstractSuppressing random noise in seismic signals is an important issue in research on processing seismic data. Such data are difficult to interpret because seismic signals usually contain a large amount of random noise. While denoising can be used to reduce noise, most denoising methods require the prior estimation of the threshold of the signals to handle random noise, which makes it difficult to ensure optimal results. In this paper, we propose a wavelet threshold-based method of denoising that uses the improved chaotic fruit fly optimization algorithm. Our method of selects uses generalized cross-validation as the objective function for threshold selection. This objective function is optimized by introducing an adjustment coefficient to the chaotic fruit fly optimization algorithm, and the optimal wavelet threshold can then be obtained without any prior information. We conducted denoising tests by using synthetic seismic records and empirical seismic data acquired from the field. We added three types of noise, with different average signal-to-noise ratios, to synthetic seismograms containing noise with original intensities of − 5, − 1, and 4 dB, respectively. The results showed that after denoising, the signal-to-noise ratios of the three types of noise increased to 7.12, 10.04, and 14.26, while the mean-squared errors in the results of the proposed algorithm decreased to 0.006, 0.0031, and 0.0012, respectively.

Funder

Quzhou University's research start-up funding support project

the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Quzhou Science and Technology Planning Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3