Centralized fusion robust filtering for networked uncertain systems with colored noises, one-step random delay, and packet dropouts

Author:

Li Shuang,Liu Wenqiang,Tao Guili

Abstract

AbstractThis paper studies the estimation problem for multisensor networked systems with mixed uncertainties, which include colored noises, same multiplicative noises in system parameter matrices, uncertain noise variances, as well as the one-step random delay (OSRD) and packet dropouts (PDs). This study utilizes the centralized fusion (CF) algorithm to combing all information received by each sensor, which improve the accuracy of the estimation. By using the augmentation method, de-randomization method and fictitious noise techniques, the original uncertain system is transformed into an augment model with only uncertain noise variances. Then, for all uncertainties within the allowable range, the robust CF steady-state Kalman estimators (predictor, filter, and smoother) are presented based on the worst-case CF system, in light of the minimax robust estimation principle. To demonstrate the robustness of the proposed CF estimators, the non-negative definite matrix decomposition method and Lyapunov equation approach are employed. It is proved that the robust accuracy of CF estimator is higher than that of each local estimator. Finally, the simulation example applied to the uninterruptible power system (UPS) with colored noises and multiple uncertainties illustrates the effectiveness of the proposed CF robust estimation algorithm.

Funder

Heilongjiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference35 articles.

1. M.E. Liggins, D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion: Theory and Practice, 2nd edn. (CRC Press, New York, 2009)

2. S.L. Sun, Z.L. Deng, Multi-sensor optimal information fusion Kalman filter. Automatica 40, 1017–1203 (2004)

3. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, NJ, 1979)

4. F.L. Lewis, L.H. Xie, P. Dan, Optimal and Robust Estimation with an Introduction to Stochastic Control Theory, 2nd edn. (CRC Press, New York, 2008)

5. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust centralized and weighted measurement fusion Kalman estimators for uncertain multisensor systems with linearly correlated white noises. Inf. Fusion 35, 11–25 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3