Quantization error for weak RF simultaneous signal estimation

Author:

Lanzerotti Mary Y.ORCID,Queen Adaya,Cerny Charles

Abstract

AbstractIn a congested signal environment, it is difficult to obtain estimates of weak RF signal parameters. Determining signal parameter estimates in real time is a challenge for electronic warfare receivers that aim to receive multiple simultaneous signals. Prior work provided estimates of weak signal parameters (weak signal frequency and weak signal amplitude) without taking into account any error introduced by analog-to-digital converters that are inherently part of digital signal processing systems. In order to obtain realistic estimates, we need to take error introduced by an ADC into account. The primary aim of this paper is to quantify error introduced by a single ideal ADC as a function of angle. This paper presents a method to estimate angle resolution and quantization levels in N-bit analog-to-digital converters (ADCs) for use in a weak radiofrequency (RF) simultaneous signal estimation process. The paper quantifies the error in the angle quantization of an N-bit ADC for an input complex signal that is the instantaneous frequency obtained for the situation in which there are two simultaneous signals (with one strong signal and one weak signal) in a weak RF simultaneous signal estimation process. The presented method describes the process to determine the angle quantization range, angle quantization uncertainty, and angle quantization error. This approach has potential applications in electronic warfare (EW) systems. The approach also has potential for assessing ADC performance for measurements that approach the quantum limit. Results are presented for 1-bit, 2-bit, 3-bit, and 10-bit ADCs.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional synchrosqueezing transform for enhanced multicomponent signal separation;Scientific Reports;2024-08-05

2. Multi-tier dynamic sampling weak RF signal estimation theory;EURASIP Journal on Advances in Signal Processing;2024-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3