Convolutional neural network and clustering-based codebook design method for massive MIMO systems

Author:

Xing JingORCID,Hu Die

Abstract

AbstractIn this paper, we propose a convolutional neural network (CNN) and clustering-based codebook design method. Specifically, we train two different CNNs, i.e., CNN1 and CNN2, to compress the channel state information (CSI) matrices into the channel vectors and recover the channel vectors back into the CSI matrices, respectively. After that, the clustering algorithm clusters the output of CNN1, i.e., the channel vectors into several clusters and outputs a centroid for each cluster. The sum distance between each centroid and the channel vectors in the corresponding cluster is the smallest, which can lead to the maximum sum rate of massive MIMO codebook design. Then, the centroids are recovered into matrices by CNN2. The output of CNN2 is our proposed codebook for massive multiple-input multiple-output (MIMO) systems. In the simulation, we compare the performance of different clustering algorithms. We also compare the proposed codebook with the traditional discrete Fourier transform (DFT) codebook. Simulation results show the superiority of the proposed algorithm.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3