EA-ADMM: noisy tensor PARAFAC decomposition based on element-wise average ADMM

Author:

Yue Gang,Sun ZhuoORCID

Abstract

AbstractTensor decomposition is widely used to exploit the internal correlation in multi-way data analysis and process for communications and radar systems. As one of the main tensor decomposition methods, CANDECOMP/PARAFAC decomposition has advantages of uniqueness and interpretation properties which are significant in practical applications. However, traditional decomposition method is sensitive to both predefined rank and noise that results in inaccurate tensor decomposition. In this paper, we propose a improved algorithm called the Element-wise Average Alternating Direction Method of Multipliers by minimizing the sum of all factors’ trace norm and the noise variance. Our algorithm could overcome the dependence on predefined rank in traditional decomposition algorithms and alleviate the impact of noise. Moreover, this algorithm can be transferred to solve the problem of tensor completion conveniently. The simulation results show that our proposed algorithm could decompose the noisy tensor to the factors with above 90% similarity in various SNR and also interpolate the incomplete tensor with higher similar coefficient and lower relative reconstruction error when the missing rate is less than 0.5.

Funder

National Natural Science Foundation of China

Manufacturing High Quality Development Fund Project in China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3