Design of sparse arrays via deep learning for enhanced DOA estimation

Author:

Wandale Steven,Ichige KoichiORCID

Abstract

AbstractThis paper introduces an enhanced deep learning-based (DL) antenna selection approach for optimum sparse linear array selection for direction-of-arrival (DOA) estimation applications. Generally, the antenna selection problem yields a combination of subarrays as a solution. Previous DL-based methods designated these subarrays as classes to fit the problem into a classification problem to which a convolutional neural network (CNN) is employed to solve it. However, these methods sample the combination set randomly to reduce computational cost related to the generation of training data, and it often leads to sub-optimal solutions due to ill-sampling issues. Hence, in this paper, we propose an improved DL-based method by constraining the combination set to retain the hole-free subarrays to enhance the method’s performance and sparse subarrays rendered. Numerical examples show that the proposed method yields sparser subarrays with better beampattern properties and improved DOA estimation performance than conventional DL techniques.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. T. E. Tuncer, B. Friedlander, Classical and modern direction of arrival estimation (Academic Press, Burlington, 2009).

2. H. L. Van Trees, Optimum array processing, detection, estimation and modulation part IV (Wiley, New York, 2002).

3. S. Theodoridis, R. Chellappa, Academic Press Library in Signal Processing 3 Array and Statistical Signal Processing (Academic Press, Inc., Orlando, FL, USA, 2013).

4. S. Joshi, S. Boyd, Sensor selection via convex optimization. IEEE Trans. Sig. Process. 57(2), 451–462 (2009).

5. E. Tohidi, M. Coutino, S. P Chepuri, H. Behroozi, M. M. Nayebi, G. Leus, Sparse antenna and pulse placement for colocated MIMO radar. IEEE Trans. Sig. Process. 67(3), 579–593 (2019).

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3