An FSCEEMD method for downhole weak SNR signal extraction of near-bit attitude parameters

Author:

Mao YanhuiORCID,Yang Longhan,Huo Aiqing,Li Fei,Gao Yi

Abstract

AbstractIn practice, the near-bit drilling tool confronts with strong vibrations and high-speed rotation. Therein the original signal amplitude of the tool attitude measurements is relatively feeble, and the signal-to-noise ratio (SNR) is exceptionally low. To handle this issue, this paper proposes a weak SNR signal extraction method, frequency selecting complementary ensemble empirical mode decomposition, which is based on ensemble empirical mode decomposition combining with complementary noise and frequency selecting. This method firstly adds different positive and negative pairs of auxiliary white noise to the original near-bit weak SNR signal, secondly adopts empirical mode decomposition on each pair of noise-added signals, then performs ensemble averaging on the obtained multiple sets of intrinsic mode function (IMF) to output more stable IMF of each order and set suitable weights according to designed frequency threshold, and finally reconstructs the original useful signal through weighted summing IMFs. Simulation results show that the extraction accuracy of well inclination angle ranges about ± 0.51°, and the extraction accuracy of tool face angle ranges about ± 1.35°, and meanwhile experimental results are provided compared with other advanced methods, which verifies the effectiveness of our method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3