Real-time detection of aerobics posture based on strain sensor

Author:

Zhu Shanshan

Abstract

AbstractThe Internet of Things is a network that realizes the intelligent connection between things. It is another major industry after the computer industry and the Internet industry. It is also a collection of computer technology, communication technology, sensor technology, storage technology, and many other leading technologies in an integrated industry, the application industry is very wide. This article mainly introduces the real-time detection of aerobics posture based on strain sensors. This paper proposes a real-time detection method of motion posture based on strain sensors, using flexible rods to simulate the joints of aerobics athletes. Through the survey of the motion posture by the strain sensor, the relevant data and parameters are collected, and then the data are processed, and the data are finally transmitted to the terminal. Since the stress of a specific point on the surface of the flexible rod is proportional to the curve of that point, strain gauges can be used to detect curve changes at multiple points in real time and draw the change curve on the computer. The experimental structure of this paper shows that the use of BP neural network to process the measurement data improves the accuracy of real-time detection. The error distance between the sampling point and the actual value is less than 0.3 cm. In addition, through the real-time detection of the motion posture, it can be concluded that good Body posture is the basic requirement of aerobics, and it is of great significance to improve the effect of improving the quality of movement and artistic expression.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retraction Note: Real-time detection of aerobics posture based on strain sensor;EURASIP Journal on Advances in Signal Processing;2022-09-10

2. Design of Calisthenics Choreography and Recording System Based on Action Recognition Algorithm;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3