Application of a modified Inception-v3 model in the dynasty-based classification of ancient murals

Author:

Cao JianfangORCID,Yan Minmin,Jia Yiming,Tian Xiaodong,Zhang Zibang

Abstract

AbstractIt is difficult to identify the historical period in which some ancient murals were created because of damage due to artificial and/or natural factors; similarities in content, style, and color among murals; low image resolution; and other reasons. This study proposed a transfer learning-fused Inception-v3 model for dynasty-based classification. First, the model adopted Inception-v3 with frozen fully connected and softmax layers for pretraining over ImageNet. Second, the model fused Inception-v3 with transfer learning for parameter readjustment over small datasets. Third, the corresponding bottleneck files of the mural images were generated, and the deep-level features of the images were extracted. Fourth, the cross-entropy loss function was employed to calculate the loss value at each step of the training, and an algorithm for the adaptive learning rate on the stochastic gradient descent was applied to unify the learning rate. Finally, the updated softmax classifier was utilized for the dynasty-based classification of the images. On the constructed small datasets, the accuracy rate, recall rate, and F1 value of the proposed model were 88.4%, 88.36%, and 88.32%, respectively, which exhibited noticeable increases compared with those of typical deep learning models and modified convolutional neural networks. Comparisons of the classification outcomes for the mural dataset with those for other painting datasets and natural image datasets showed that the proposed model achieved stable classification outcomes with a powerful generalization capacity. The training time of the proposed model was only 0.7 s, and overfitting seldom occurred.

Funder

Natural Science Foundation of Shanxi Province

Key Research Base Project of Humanities and Social Sciences in Colleges and universities of Shanxi Province

Art and Science Planning Project of Shanxi Province

Xinzhou platform and talent project

Publisher

Springer Science and Business Media LLC

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3