On the application of generalized linear mixed models for predicting path loss in LTE networks

Author:

Cohen Achraf,Alqudah Yazan A.ORCID

Abstract

AbstractTo meet the ever-growing demand for higher data rates, accurate channel models are needed for optimal design and deployment of mobile wireless networks. This work proposes a new method for addressing path loss modeling at 800 MHz of suburban environment based on field measurements. Using generalized linear mixed models, we develop a new statistical model that accounts for the autocorrelation among measurements at the same distance at different times. The proposed method allows linear, quadratic, and cubic relationship forms between the path loss measurements and the natural logarithm of the distance, which is almost unexplored as existing models use a straight line relationship. A comparison study consists of comparing nine propagation models in terms of the mean absolute prediction error. The new model performs over $$30\%$$ 30 % better than the existing models for the considered measurements. We also show that a cubic relationship form between path loss measurements and the logarithm of distance could be more suitable than a straight line form for prediction purposes. The results show that the generalized linear mixed models significantly improve the prediction power regardless of the form of the model (linear, quadratic, or cubic).

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference21 articles.

1. C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications, 1st edn. (Wiley Publishing, 2012)

2. GSA. (2019) Global mobile supplier association. [Online]. Available: https://gsacom.com

3. A.A. Polegre, R. Pérez Leal, J.A. García García, A. García Armada, Drive tests-based evaluation of macroscopic pathloss models for mobile networks, in 2019 European Conference on Networks and Communications (EuCNC) (2019), pp. 501–505

4. M. Hamid, I. Kostanic, Path loss models for LTE and LTE-A relay stations. Univ. J. Commun. Netw. 1, 119–126 (2013)

5. M. Sasaki, W. Yamada, T. Sugiyama, M. Mizoguchi, T. Imai, Path loss characteristics at 800 MHz to 37 GHz in urban street microcell environment, in 2015 9th European Conference on Antennas and Propagation (EuCAP) (2015), pp. 1–4

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random effect generalized linear model-based predictive modelling of traffic noise;Environmental Monitoring and Assessment;2024-01-18

2. Prediction of Path Loss in Wireless Communication Networks based on Swarm Optimized Gradient Dual Layer Graph Neural Network;2023 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3