De-noising classification method for financial time series based on ICEEMDAN and wavelet threshold, and its application

Author:

Liu Bing,Cheng HuanhuanORCID

Abstract

AbstractThis paper proposes a classification method for financial time series that addresses the significant issue of noise. The proposed method combines improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and wavelet threshold de-noising. The method begins by employing ICEEMDAN to decompose the time series into modal components and residuals. Using the noise component verification approach introduced in this paper, these components are categorized into noisy and de-noised elements. The noisy components are then de-noised using the Wavelet Threshold technique, which separates the non-noise and noise elements. The final de-noised output is produced by merging the non-noise elements with the de-noised components, and the 1-NN (nearest neighbor) algorithm is applied for time series classification. Highlighting its practical value in finance, this paper introduces a two-step stock classification prediction method that combines time series classification with a BP (Backpropagation) neural network. The method first classifies stocks into portfolios with high internal similarity using time series classification. It then employs a BP neural network to predict the classification of stock price movements within these portfolios. Backtesting confirms that this approach can enhance the accuracy of predicting stock price fluctuations.

Funder

Foundation for Distinguished Young Talents in Higher Education of Henan

Key Research Projects of Anhui Humanities and Social Sciences

Key Scientific Research Projects of Huainan Normal University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ICEEMDAN-Informer-GWO: a hybrid model for accurate wind speed prediction;Environmental Science and Pollution Research;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3