Robust automatic modulation classification under noise mismatch

Author:

Guo Lan,Gao RuiORCID,Cong Yang,Yang Lei

Abstract

AbstractAutomatic modulation classification plays a critical role in the intelligent reception of unknown wireless signals. In practice, the dynamic wireless environment brings a great challenge, and the actual test model is inconsistent with the training model. Therefore, aiming at the problem of noise mismatch, this paper proposes a new modulation classification method based on KD-GoogLeNet and Squeeze-Excitation (KD-GSENet). Using the k-dimensional tree, the complex wireless signals are converted into color images rather than normal constellations, which can enhance the classification features. Considering the attention block has the inherent advantage of assigning more weights to important features, this paper further uses it to improve the GoogLeNet. Finally, extensive experiments are presented including Gaussian noise, non-Gaussian noise, and the scenarios of noise mismatch. Numerical results verify the superior classification performance of the proposed KD-GSENet under different scenarios.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction: Robust automatic modulation classification under noise mismatch;EURASIP Journal on Advances in Signal Processing;2023-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3