Target-driven obstacle avoidance algorithm based on DDPG for connected autonomous vehicles

Author:

Chen YuORCID,Han Wei,Zhu Qinghua,Liu Yong,Zhao Jingya

Abstract

AbstractIn the field of autonomous driving, obstacle avoidance is of great significance for safe driving. At present, in addition to traditional obstacle avoidance algorithms including VFH algorithm, artificial potential field method, a large number of related researches are focused on algorithms based on vision and neural networks. Researches on these algorithms have achieved some results, and some of which have completed real road tests. However, most of algorithms consider only local environmental information which may cause local optimum in complex driving environments. Therefore, it is necessary to consider the environmental information beyond the sensor's perceptual ability for autonomous driving in complex environment. In the network-assisted automated driving system, networked vehicles can obtain road obstacles’ and condition information through roadside sensors and mobile network, so as to gain extra sensing ability. Therefore, network-assisted automated driving is of great significance in obstacle avoidance. Under this background, this paper presents an automatic driving obstacle avoidance strategy combining path planning and reinforcement learning. At first, a global optimal path is planned through global information, then merge the global optimal path and vehicle information into a vector. Use this vector as input of reinforcement learning neural network and output vehicle control signals to follow optimal path while avoiding obstacles.

Funder

Beijing Municipal Commission of Education

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3