Time-frequency analysis-based deep interference classification for frequency hopping system

Author:

Xu Changzhi,Ren Jingya,Yu Wanxin,Jin Yi,Cao Zhenxin,Wu Xiaogang,Jiang Weiheng

Abstract

AbstractIt is known that interference classification plays an important role in protecting the authorized communication system and avoiding its performance degradation in the hostile environment. In this paper, the interference classification problem for the frequency hopping communication system is discussed. Considering the possibility of the presence of multiple interferences in the frequency hopping system, in order to fully extract effective features of the interferences from the received signals, the linear and bilinear transform-based composite time-frequency analysis method is adopted. Then, the time-frequency spectrograms obtained from the time-frequency analysis are constructed as matching pairs and input to the deep neural network for classification. In particular, the Siamese neural network is used as the classifier, where the paired spectrograms are input into the two sub-networks of the deep networks, and these two sub-networks extract the features of the paired spectrograms for interference-type classification. The simulation results confirm that the proposed algorithm can obtain higher classification accuracy than both traditional single time-frequency representation-based approach and the AlexNet transfer learning or convolutional neural network-based methods.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3