Adaptable waveform design for radar and jammer for multi-target using game theoretic strategies

Author:

Xin Fengming,Wang YanORCID,Sun Jiawen,Huang Yilin

Abstract

AbstractIn the environment of electronic warfare, the countermeasure between radar and jammer has become a hot issue. Finding the solution to optimal waveforms between them is very great significance. Aiming at the problem of multi-target detection in clutter environment, the authors propose the waveform optimization method based on signal-to-interference-plus-noise ratio (SINR) criterion for radar and jammer, respectively. When radar is the dominant player, the maxmin strategy is used to establish the optimization model to optimize the radar transmission waveform. When jammer is the dominant player, the minmax strategy is used to establish the optimization model to optimize the jammer waveform. When dealing with random multi-target, the authors also propose an adaptive weight method to solve the problem of summation of weighted multiple targets. Then, an improved method combined with Jensen’s inequality for radar and jammer is proposed, respectively, which could improve the detection performance of the radar system and reduce the computational complexity of maximum SINR-based method. The simulation results show that the proposed maximum SINR-based methods could adaptively allocate the transmission energy to improve the performance of the radar. The energy allocation of radar and jammer is slightly different under maxmin strategy and minmax strategy. The proposed improved methods could output the higher SINR than the maximum SINR-based methods. Both of the proposed methods could improve the performance of radar detecting targets.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3