Low-complexity signal detection networks based on Gauss-Seidel iterative method for massive MIMO systems

Author:

Yao Haifeng,Li Ting,Song Yunchao,Ji Wei,Liang Yan,Li FeiORCID

Abstract

AbstractIn massive multiple-input multiple-output (MIMO) systems with single- antenna user equipment (SAUE) or multiple-antenna user equipment (MAUE), with the increase of the number of received antennas at base station, the complexity of traditional detectors is also increasing. In order to reduce the high complexity of parallel running of the traditional Gauss-Seidel iterative method, this paper proposes a model-driven deep learning detector network, namely Block Gauss-Seidel Network (BGS-Net), which is based on the Gauss-Seidel iterative method. We reduce complexity by converting a large matrix inversion to small matrix inversions. In order to improve the symbol error ratio (SER) of BGS-Net under MAUE system, we propose Improved BGS-Net. The simulation results show that, compared with the existing model-driven algorithms, BGS-Net has lower complexity and similar the detection performance; good robustness, and its performance is less affected by changes in the number of antennas; Improved BGS-Net can improve the detection performance of BGS-Net.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3