Blind estimation of modulation parameters for PCMA signals using frame cyclic features

Author:

Li FangORCID,Qiu Zhaoyang,Zha Xiong,Li Tianyun

Abstract

AbstractBlind receiver technologies for paired carrier multiple access (PCMA) signals have always been a challenging task with many technical difficulties, among which the estimation of modulation parameters is a fundamental but important element. Despite some achievements in previous studies, more systematic and sophisticated estimation methods have not been adequately investigated. In this paper, schemes for the blind estimation of the symbol timing phase, amplitude attenuation, frequency offset, and carrier phase for PCMA signals in satellite communications are proposed. The data flow transmitted in satellite communication often has a certain frame structure, the most important of which is the synchronization data, namely the so-called cycle features. The proposed schemes assume that the modulated signals have fixed frame length and frame sync code and that the symbol rate has been estimated when the signals are encoded asynchronously. Distinct from the previous methods, our schemes exploit the sync waveform and the overlapping waveform, which are estimated via singular value decomposition (SVD) (using the frame cyclic features) and interference cancelation, together with their demodulation results as aid data, for the estimation of the desired parameters. The simulation results demonstrate that the schemes are effective in the parameters estimation of PCMA signals and outperform the comparison algorithms.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3