Using tensor contractions to derive the structure of slice-wise multiplications of tensors with applications to space–time Khatri–Rao coding for MIMO-OFDM systems

Author:

Naskovska Kristina,Sokal BrunoORCID,de Almeida André L. F.,Haardt Martin

Abstract

AbstractThe slice-wise multiplication of two tensors is required in a variety of tensor decompositions (including PARAFAC2 and PARATUCK2) and is encountered in many applications, including the analysis of multidimensional biomedical data (EEG, MEG, etc.) or multi-carrier multiple-input multiple-output (MIMO) systems. In this paper, we propose a new tensor representation that is not based on a slice-wise (matrix) description, but can be represented by a double contraction of two tensors. Such a double contraction of two tensors can be efficiently calculated via generalized unfoldings. It leads to new tensor models of the investigated system that do not depend on the chosen unfolding (in contrast to matrix models) and reveal the tensor structure of the data model, such that all possible unfoldings can be seen at the same time. As an example, we apply this new concept to the design of new receivers for multi-carrier MIMO systems in wireless communications. In particular, we consider MIMO-orthogonal frequency division multiplexing (OFDM) systems with and without Khatri–Rao coding. The proposed receivers exploit the channel correlation between adjacent subcarriers, require the same amount of training symbols as traditional OFDM techniques, but have an improved performance in terms of the symbol error rate. Furthermore, we show that the spectral efficiency of the Khatri–Rao-coded MIMO-OFDM can be increased by introducing cross-coding such that the “coding matrix” also contains useful information symbols. Considering this transmission technique, we derive a tensor model and two types of receivers for cross-coded MIMO-OFDM systems using the double contraction of two tensors.

Funder

CNPq

CAPES/PROBRAL

CAPES/PRINT

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3