Free resources for forced phonetic alignment in Brazilian Portuguese based on Kaldi toolkit

Author:

Batista CassioORCID,Dias Ana Larissa,Neto Nelson

Abstract

AbstractPhonetic analysis of speech, in general, requires the alignment of audio samples to its phonetic transcription. This could be done manually for a couple of files, but as the corpus grows large, it becomes infeasibly time-consuming. This paper describes the evolution process toward creating free resources for phonetic alignment in Brazilian Portuguese (BP) using Kaldi, a toolkit that achieves state of the art for open-source speech recognition, within a toolkit we call UFPAlign. The contributions of this work are then twofold: developing resources to perform forced alignment in BP, including the release of scripts to train acoustic models via Kaldi, as well as the resources themselves under open licenses; and bringing forth a comparison to other two phonetic aligners that provide resources for BP, namely EasyAlign and Montreal Forced Aligner (MFA), the latter being also Kaldi-based. Evaluation took place in terms of phone boundary and intersection over union metrics over a dataset of 385 hand-aligned utterances, and results show that Kaldi-based aligners perform better overall, and that UFPAlign models are more accurate than MFA’s. Furthermore, complex deep-learning-based approaches still do not improve performance compared to simpler models.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3