Tracking of moving human in different overlapping cameras using Kalman filter optimized

Author:

Yousefi Seyed Mohammad Mehdi,Mohseni Seyed Saleh,Dehbovid Hadi,Ghaderi Reza

Abstract

AbstractTracking objects is a crucial problem in image processing and machine vision, involving the representation of position changes of an object and following it in a sequence of video images. Though it has a history in military applications, tracking has become increasingly important since the 1980s due to its wide-ranging applications in different areas. This study focuses on tracking moving objects with human identity and identifying individuals through their appearance, using an Artificial Neural Network (ANN) classification algorithm. The Kalman filter is an important tool in this process, as it can predict the movement trajectory and estimate the position of moving objects. The tracking error is reduced by weighting the filter using a fuzzy logic algorithm for each moving human. After tracking people, they are identified using the features extracted from the histogram of images by ANN. However, there are various challenges in implementing this method, which can be addressed by using Genetic Algorithm (GA) for feature selection. The simulations in this study aim to evaluate the convergence rate and estimation error of the filter. The results show that the proposed method achieves better results than other similar methods in tracking position in three different datasets. Moreover, the proposed method performs 8% better on average than other similar algorithms in night vision, cloud vision, and daylight vision situations.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fully active and highly reliable combined ring voltage controlled CMOS oscillator;Memories - Materials, Devices, Circuits and Systems;2024-08

2. Design of a Multi-Channel PID Temperature Control System Based on PLC and Internet of Things (IOT);Journal of Electrical Engineering & Technology;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3