Abstract
AbstractWith the inherent advantages of exceptional maneuverability, flexible deployment options and cost-effectiveness, unmanned aerial vehicles (UAVs) present themselves as a viable solution for providing aerial communication services to Internet of Things devices in high-traffic or remote areas. Nevertheless, the openness of the air–ground channel poses significant security challenges to UAV-based wireless systems. In this paper, a UAV-assisted secure communication system model is established based on non-orthogonal multiple access (NOMA) from the perspective of physical layer security, aiming to conceal the transmission behavior between UAVs and legitimate users (LUs). Specifically, a mobile UAV assumes the role of an aerial base station, leveraging NOMA technique to transmit data to LUs while evading detection from mobile eavesdropper situated on the ground. To fortify the security performance of the system, a hovering UAV acts as a friendly jammer and transmits interference signals to mobile eavesdropper (referred to as Eve). The objective of this scheme is to maximize the minimum average secure rate of all LUs by meticulously optimizing the trajectory and power allocation of the mobile UAV, subject to secrecy performance constraints. The highly interdependent and non-convex nature of this optimization problem renders direct solutions infeasible. Hence, this paper designs an efficient iterative algorithm that decouples the original problem into two subproblems, enabling an alternating optimization process for the trajectory and power allocation of the mobile UAV until the convergence of the objective function is achieved. Simulation results demonstrate that the proposed algorithm effectively improves the minimum average secure rate of all LUs compared with the benchmark scheme.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. A.M. El-Shorbagy, 5g technology and the future of architecture. Procedia Comput. Sci. 182, 121–131 (2021)
2. X. Ma, Z. Na, B. Lin, L. Liu, Energy efficiency optimization of uav-assisted wireless powered systems for dependable data collections in internet of things. IEEE Trans. Reliab. 72(2), 472–482 (2023)
3. S. Tang, L. Chen, K. He, J. Xia, L. Fan, A. Nallanathan, Computational intelligence and deep learning for next-generation edge-enabled industrial iot. IEEE Trans. Netw. Sci. Eng. 10, 1–13 (2022)
4. L. Chen, X. Lei, Relay-assisted federated edge learning: Performance analysis and system optimization. IEEE Trans. Commun. 71(6), 3387–3401 (2023)
5. Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, G.K. Karagiannidis, Distributed machine learning for multiuser mobile edge computing systems. IEEE J. Sel. Top. Signal Process. 16(3), 460–473 (2022)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献