Resilient data-driven non-intrusive load monitoring for efficient energy management using machine learning techniques

Author:

Nutakki Mounica,Mandava SrihariORCID

Abstract

AbstractThe integration of smart homes into smart grids presents numerous challenges, particularly in managing energy consumption efficiently. Non-intrusive load management (NILM) has emerged as a viable solution for optimizing energy usage. However, as smart grids incorporate more distributed energy resources, the complexity of demand-side management and energy optimization escalates. Various techniques have been proposed to address these challenges, but the evolving grid necessitates intelligent optimization strategies. This article explores the potential of data-driven NILM (DNILM) by leveraging multiple machine learning algorithms and neural network architectures for appliance state monitoring and predicting future energy consumption. It underscores the significance of intelligent optimization techniques in enhancing prediction accuracy. The article compares several data-driven mechanisms, including decision trees, sequence-to-point models, denoising autoencoders, recurrent neural networks, long short-term memory, and gated recurrent unit models. Furthermore, the article categorizes different forms of NILM and discusses the impact of calibration and load division. A detailed comparative analysis is conducted using evaluation metrics such as root-mean-square error, mean absolute error, and accuracy for each method. The proposed DNILM approach is implemented using Python 3.10.5 on the REDD dataset, demonstrating its effectiveness in addressing the complexities of energy optimization in smart grid environments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3