Abstract
AbstractHyperspectral images have a special attribute with both spectral and spatial information, which is of great significance for the evaluation of the stealth performance of camouflaged targets. Aiming at the problems of a single evaluation index and the low credibility of traditional optical camouflage evaluation methods, this paper proposes a grayscale clustering camouflage effect evaluation method based on multifeature descriptions of hyperspectral images using similarity indicators that reflect different spectral characteristics of the target and background. From the perspective of spectrum and human visual contrast, a comprehensive evaluation index system including spectral distance feature, spectral derivative feature, curve shape feature and spatial texture feature is constructed by combining spatial–spectral multi-feature constraints. At the same time, an improved Delphi method is proposed to simulate the expert decision-making process, and better evaluation weights are obtained by comparison and screening. The comprehensive evaluation of camouflage effect based on whitening function gray clustering is realized. The proposed method can not only give the “excellent” and “bad” of camouflage effect qualitatively, but also calculate the comprehensive score of camouflage effect by model.
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. C. Yu, M. Zhao, M. Song, Y. Wang, F. Li, R. Han, C.-I. Chang, Hyperspectral image classification method based on cnn architecture embedding with hashing semantic feature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(6), 1866–1881 (2019)
2. P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, A. Plaza, Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)
3. M.E. Paoletti, J.M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza, J. Li, F. Pla, Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(4), 2145–2160 (2019)
4. A. Zavvartorbati, H. Dehghani, A.J. Rashidi, Evaluation of camouflage effectiveness using hyperspectral images. J. Appl. Remote Sens. 11(4), 1 (2017)
5. M. Kastek, T. Piatkowski, R. Dulski, M. Chamberland, V. Farley, Multispectral and hyperspectral measurements of soldier’s camouflage equipment. Proc. SPIE Int. Soc. Opt. Eng. 8382, 83820K (2012)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient digital camouflage pattern generation algorithm based on improved GA-K-means clustering algorithm;Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024);2024-07-11
2. A camouflage generation algorithm based on modified K-means clustering;Second International Conference on Electronic Information Technology (EIT 2023);2023-08-15