A single triangular SS-EMVS aided high-accuracy DOA estimation using a multi-scale L-shaped sparse array

Author:

Ding Jin,Yang MingleiORCID,Chen Baixiao,Yuan Xin

Abstract

Abstract We propose a new array configuration composed of multi-scale scalar arrays and a single triangular spatially spread electromagnetic-vector-sensor (SS-EMVS) for high-accuracy two-dimensional (2D) direction-of-arrival (DOA) estimation. Two scalar arrays are placed along x-axis and y-axis, respectively, each array consists of two uniform linear arrays (ULAs), and these two ULAs have different inter-element spacings. In this manner, these two scalar arrays form a multi-scale L-shaped array. The two arms of this L-shaped scalar array are connected by a six-component SS-EMVS, which is composed of a spatially spread dipole-triad plus a spatially spread loop-triad. All the inter-element spacings in our proposed array can be larger than a half-wavelength of the incident source, thus to form a sparse array to mitigate the mutual coupling across antennas. In the proposed DOA estimation algorithm, we perform the vector-cross-product algorithm to the SS-EMVS to obtain a set of low-accuracy but unambiguous direction cosine estimation as a reference; we then impose estimation of signal parameters via rotation invariant technique (ESPRIT) algorithm to the two scalar arrays to get two sets of high-accuracy but cyclically ambiguous direction cosine estimations. Finally, the coarse estimation is used to disambiguate the fine but ambiguous estimations progressively and therefore a multiple-order disambiguation algorithm is developed. The proposed array enjoys the superiority of low redundancy and low mutual coupling. Moreover, the thresholds of the inter-sensor spacings utilized in the proposed array are also analyzed. Simulation results validate the performance of the proposed array geometry.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3