Abstract
AbstractThe person re-identification is one of the most significant problems in computer vision and surveillance systems. The recent success of deep convolutional neural networks in image classification has inspired researchers to investigate the application of deep learning to the person re-identification. However, the huge amount of research on this problem considers classical settings, where pedestrians are captured by static surveillance cameras, although there is a growing demand for analyzing images and videos taken by drones. In this paper, we aim at filling this gap and provide insights on the person re-identification from drones. To our knowledge, it is the first attempt to tackle this problem under such constraints. We present the person re-identification dataset, named DRone HIT (DRHIT01), which is collected by using a drone. It contains 101 unique pedestrians, which are annotated with their identities. Each pedestrian has about 500 images. We propose to use a combination of triplet and large-margin Gaussian mixture (L-GM) loss to tackle the drone-based person re-identification problem. The proposed network equipped with multi-branch design, channel group learning, and combination of loss functions is evaluated on the DRHIT01 dataset. Besides, transfer learning from the most popular person re-identification datasets is evaluated. Experiment results demonstrate the importance of transfer learning and show that the proposed model outperforms the classic deep learning approach.
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. W. Li, R. Zhao, T. Xiao, X. Wang, DeepReID: deep filter pairing neural network for person re-identification. 2014 IEEE Conf. Comput. Vis. Pattern Recognit., 152–159 (2014).
2. H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang, X. Tang, Spindle Net: person re-identification with human body region guided feature decomposition and fusion. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 907–915 (2017).
3. X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang, C. Zhang, J. Sun, AlignedReID: surpassing human-level performance in person identification. CoRR. abs/1711.08184: (2017). http://arxiv.org/abs/1711.08184. https://dblp.org/rec/bib/journals/corr/abs-1711-08184.
4. W. Li, X. Zhu, S. Gong, Harmonious attention network for person re-identification (2018).
5. A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification. CoRR. abs/1703.07737: (2017). http://arxiv.org/abs/1703.07737. https://dblp.org/rec/bib/journals/corr/HermansBL17.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Systematic literature review of AI algorithms applied to unmanned aerial vehicle images;International Journal of Image and Data Fusion;2024-07-24
2. Memory-Enhanced Dynamic Evolutionary Control of Reconfigurable Intelligent Surfaces;IEEE Transactions on Antennas and Propagation;2024-07
3. Fast UAV- Image-based Person Re-Identification at the Edge;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15
4. Multi-resolution feature perception network for UAV person re-identification;Multimedia Tools and Applications;2024-01-06
5. Unsupervised Person Re-Identification in Aerial Imagery;2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2024-01-01