Formal analysis of 2D image processing filters using higher-order logic theorem proving

Author:

Rashid Adnan,Abed Sa’edORCID,Hasan Osman

Abstract

AbstractTwo-dimensional (2D) image processing systems are concerned with the processing of the images represented as 2D arrays and are widely used in medicine, transportation and many other autonomous systems. The dynamics of these systems are generally modeled using 2D difference equations, which are mathematically analyzed using the 2D z-transform. It mainly involves a transformation of the difference equations-based models of these systems to their corresponding algebraic equations, mapping the 2D arrays (2D discrete-time signals) over the ($$z_1$$ z 1 ,$$z_2$$ z 2 )-domain. Finally, these ($$z_1$$ z 1 ,$$z_2$$ z 2 )-domain representations are used to analyze various properties of these systems, such as transfer function and stability. Conventional techniques, such as paper-and-pencil proof methods, and computer-based simulation techniques for analyzing these filters cannot assert the accuracy of the analysis due to their inherent limitations like human error proneness, limited computational resources and approximations of the mathematical expressions and results. In this paper, as a complimentary technique, we propose to use formal methods, higher-order logic (HOL) theorem proving, for formally analyzing the image processing filters. These methods can overcome the limitations of the conventional techniques and thus ascertain the accuracy of the analysis. In particular, we formalize the 2D z-transform based on the multivariate theories of calculus using the  theorem prover. Moreover, we formally analyze a generic ($$L_1,L_2$$ L 1 , L 2 )-order 2D infinite impulse response image processing filter. We illustrate the practical effectiveness of our proposed approach by formally analyzing a second-order image processing filter.

Funder

Kuwait University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference16 articles.

1. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, 1990)

2. J.W. Woods, Multidimensional Signal, Image, and Video Processing and Coding (Elsevier, Amsterdam, 2006)

3. R. Hussain, S. Zeadally, Autonomous cars: research results, issues, and future challenges. IEEE Commun. Surv. Tutor. 21(2), 1275–1313 (2018)

4. H. Blasinski, J. Farrell, T. Lian, Z. Liu, B. Wandell, Optimizing image acquisition systems for autonomous driving. Electron. Imaging 2018(5), 161–1 (2018)

5. C. Behrenbruch, S. Petroudi, S. Bond, J. Declerck, F. Leong, J. Brady, Image filtering techniques for medical image post-processing: an overview. Br. J. Radiol. 77(suppl–2), 126–132 (2004)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3