Abstract
AbstractLong-term visual tracking undergoes more challenges and is closer to realistic applications than short-term tracking. However, the performances of most existing methods have been limited in the long-term tracking tasks. In this work, we present a reliable yet simple long-term tracking method, which extends the state-of-the-art learning adaptive discriminative correlation filters (LADCF) tracking algorithm with a re-detection component based on the support vector machine (SVM) model. The LADCF tracking algorithm localizes the target in each frame, and the re-detector is able to efficiently re-detect the target in the whole image when the tracking fails. We further introduce a robust confidence degree evaluation criterion that combines the maximum response criterion and the average peak-to-correlation energy (APCE) to judge the confidence level of the predicted target. When the confidence degree is generally high, the SVM is updated accordingly. If the confidence drops sharply, the SVM re-detects the target. We perform extensive experiments on the OTB-2015 and UAV123 datasets. The experimental results demonstrate the effectiveness of our algorithm in long-term tracking.
Funder
China Postdoctoral Science Special Foundation Funded Project
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
2. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)
3. H. Yang, J. Wang, Y. Miao, Y. Yang, Z. Zhao, Z. Wang, Q. Sun, D.O. Wu, Combining spatio-temporal context and Kalman filtering for visual tracking. Mathematics 7(11), 1–13 (2019)
4. D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Visual object tracking using adaptive correlation filters, (IEEE, San Francisco, 2010), pp. 2544–2550
5. M. Danelljan, F. Shahbaz Khan, M. Felsberg, J. Van de Weijer, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Adaptive color attributes for real-time visual tracking (2014), pp. 1090–1097
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献