An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization

Author:

Al-Ameen Zohair,Sulong Ghazali,Rehman Amjad,Al-Dhelaan Abdullah,Saba Tanzila,Al-Rodhaan Mznah

Abstract

Abstract Image contrast is an essential visual feature that determines whether an image is of good quality. In computed tomography (CT), captured images tend to be low contrast, which is a prevalent artifact that reduces the image quality and hampers the process of extracting its useful information. A common tactic to process such artifact is by using histogram-based techniques. However, although these techniques may improve the contrast for different grayscale imaging applications, the results are mostly unacceptable for CT images due to the presentation of various faults, noise amplification, excess brightness, and imperfect contrast. Therefore, an ameliorated version of the contrast-limited adaptive histogram equalization (CLAHE) is introduced in this article to provide a good brightness with decent contrast for CT images. The novel modification to the aforesaid technique is done by adding an initial phase of a normalized gamma correction function that helps in adjusting the gamma of the processed image to avoid the common errors of the basic CLAHE of the excess brightness and imperfect contrast it produces. The newly developed technique is tested with synthetic and real-degraded low-contrast CT images, in which it highly contributed in producing better quality results. Moreover, a low intricacy technique for contrast enhancement is proposed, and its performance is also exhibited against various versions of histogram-based enhancement technique using three advanced image quality assessment metrics of Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). Finally, the proposed technique provided acceptable results with no visible artifacts and outperformed all the comparable techniques.

Publisher

Springer Science and Business Media LLC

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced diagnostic accuracy for multiple lung diseases using a fine-tuned MobileNetV2 model with advanced pre-processing techniques;Expert Systems with Applications;2025-01

2. Detection and Classification of Brain Tumor Using Machine Learning;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

3. REVIEW OF GAMMA CORRECTION TECHNIQUES IN DIGITAL IMAGING;ShodhKosh: Journal of Visual and Performing Arts;2024-05-31

4. Time conditioning for arbitrary contrast phase generation in interventional computed tomography;Physics in Medicine & Biology;2024-05-20

5. Literature survey on deep learning methods for liver segmentation from CT images: a comprehensive review;Multimedia Tools and Applications;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3