Intelligent prediction of sudden cardiac death based on multi-domain feature fusion of heart rate variability signals

Author:

Yang Jianli,Sun Zhiqiang,Zhu Weiwei,Xiong Peng,Du Haiman,Liu Xiuling

Abstract

Abstract Background and objective Sudden cardiac death (SCD) is one of the leading causes of death in cardiovascular diseases. Monitoring the state of the heart in real time and giving early warning of possible dangers by using ambulate electrocardiogram signals are the keys to prevent cardiovascular death. However, due to the diversity inducing factors of SCD and great individual differences, accurate prediction of SCD using electrocardiogram is a hard task, especially applied in portable electrocardiograph. Methods This paper proposed a multi-domain features fusion algorithm to predict SCD. Heart rate variability (HRV) signals was used to investigate the characters of SCD. A multiscale variation feature extracted from multiscale poincare plots was proposed to demonstrate the dynamic changes of HRV along different scales. A time-domain feature, Shannon entropy and this multiscale variation feature were combined by using SVM classifier to classify SCD. HRV signals from different time periods prior to SCD onset were used to test the effectiveness of the SCD prediction algorithm. And the dynamic variation characteristics of SCD prediction accuracy for each minute were also studied. Results In the prediction of SCD using the 70-min HRV signals before the onset of SCD, the average prediction accuracy only using the multiscale variation feature reached to 85.83%, which verified the effectiveness and high specificity of this multiscale variation feature. By combining time domain, Shannon entropy and the multiscale variation feature, the average prediction accuracy was improved to 91.22%. Through fusing multi-domain feature extracted in this paper, the advance prediction time was increased to 70 min before the onset of SCD. Conclusions A feature with high sensitivity and specificity is proposed to predict SCD. By fusing multi-domain features of HRV signals, a high prediction accuracy is achieved and the advance prediction ability is improved. The algorithm is low computational complexity and easy to integrate into cardiovascular intelligent monitoring equipment, making the intelligent monitoring and real-time early warning of SCD becomes possible.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Key Projects of Science and Technology Research in Hebei Higher Education Institutions

Foundation of President of Hebei University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Recognition of Sudden Cardiac Death Combined with Deep Transfer Learning and Superficial ECG Features;2023 IEEE 4th International Conference on Pattern Recognition and Machine Learning (PRML);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3