Selecting pseudo supervision for unsupervised domain adaptive SAR target classification

Author:

Zhao LingjunORCID,He Qishan,Ding Ding,Zhang Siqian,Kuang Gangyao,Liu Li

Abstract

AbstractIn recent years, deep learning has brought significant progress for the problem of synthetic aperture radar (SAR) target classification. However, SAR image characteristics are highly sensitive to the change of imaging conditions. The inconsistency of imaging parameters (especially the depression angle) leads to the distribution shift between the training and test data and severely deteriorates the classification performance. To address this problem, in this paper we propose an unsupervised domain adaptation method based on selective pseudo-labelling for SAR target classification. Our method directly trains a deep model using the data from the target domain by generating pseudo-labels in the target domain. The key idea is to iteratively select valuable samples from the target domain and optimize the classifier. In each iteration, the breaking ties (BT) criterion is adopted to select the best samples with the highest scores of relative confidence. Besides, to avoid error accumulation in the iterative process, class confusion regularization is used to improve the accuracy of pseudo-labelling. Our method is compared with state-of-the-art methods, including supervised classification and unsupervised domain adaptation methods, over the moving and stationary target acquisition and recognition (MSTAR) dataset. The experimental results demonstrate that the proposed method can achieve better classification performance, especially when the difference of depression angles of the source and target domain images is large. Besides, our method also shows its superiority under limited-sample conditions.

Funder

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfer Adaptation Learning for Target Recognition in SAR Images: A Survey;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3