Abstract
AbstractWith the gradual transformation of chemical industry park to digital and intelligent, various types of environmental data in the park are extremely rich. It has high application value to provide safe production environment by deeply mining environmental data law and providing data support for industrial safety and workers’ health in the park through prediction means. This paper takes the noise data of the chemical industry park as the main research object, and innovatively applies the 3σ principle to the zero-value processing of the noise data, and builds an LSTM model that integrates multivariate information based on the characteristics of the wind direction classification noise data combined with the wind speed and vehicle flow information. The Prophet model integrating multi-site noise information was adopted, and the Multi-PL model was constructed by fitting the above two models to predict the noise. This paper designs and implements a comparative experiment with Kalman filter, BP neural network, Prophet, LSTM, Prophet + LSTM weighted combination prediction model. R2 was used to evaluate the fitting effect of single model in Multi-PL, RMSE and MAE that were used to evaluate the prediction effect of Multi-PL on noise time series. The experimental results show that the RMSE and MAE of the data processed by the 3σ principle are reduced by 32.2% and 23.3% in the multi-station ordered Prophet method, respectively. Compared with the above comparison models, the Multi-PL model prediction method is more stable and accurate. Therefore, the Multi-PL method proposed in this paper can provide a new idea for noise prediction in digital chemical parks.
Funder
the National Natural Science Foundation of China
the Innovative Research Foundation of Qingdao
the Application Research Project for Postdoctoral Researchers of Qingdao
the Sci. & Tech. Development Fund of Shandong Province of China
the Humanities and Social Science Research Project of the Ministry of Education
the Taishan Scholar Climbing Program of Shandong Province
SDUST Research Fund
the Science and Technology Support Plan of Youth Innovation Team of Shandong higher School
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. X. Liu, X. Zhang, Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet Things J. 6(4), 5971–5980 (2019)
2. J. Wu, H. Miao, J. Liu, Hearing status of workers in automobile industry and the correlation of influencing factors of noise deafness. Clin. Res. China 30(5), 713–716 (2017)
3. Z.U.R. Farooqi, Assessment of noise pollution and its effects on human health in industrial hub of Pakistan. Environ. Sci. Pollut. Res. Int. 27(3), 2819–2828 (2020)
4. G.R. Taffere, M. Bonsa, M. Assefa, Magnitude of occupational exposure to noise, heat and associated factors among sugarcane factory workers in Ethiopia, 2017. J. Public Health (Berl.) 28, 517–523 (2020)
5. I.P. Nyarubeli, A.M. Tungu, Variability and determinants of occupational noise exposure among iron and steel factory workers in Tanzania. Ann. Work Expos. Health 62(9), 1109–1122 (2018)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献