Joint antenna selection and waveform design for coexistence of MIMO radar and communications

Author:

Zhang Xuan,Wang XiangrongORCID,Wang Xianghua

Abstract

AbstractAs the problem of spectral congestion is becoming severe, the coexistence between two primary spectrum users, radar and communications, has spurred extensive research interest. To reduce the mutual interferences between the two functions, MIMO radar waveform design needs to consider the compatibility in both spectral and spatial domains, where the former is achieved by null forming in the frequency domain and the latter is achieved by shaped beampattern synthesis. Additionally, high power efficiency and low system overhead are two desirable characteristics for MIMO radar system design. To this end, we first introduce a new realistic waveform constraint, peak-to-valley-power-ratio (PVPR) constraint per antenna to improve the power efficiency. Then, combined with PVPR constraint, we propose a switchable individual antenna power control scheme to jointly optimize waveforms and antenna locations. We adopt a max–min beampattern matching criterion and impose the $$\ell _{2,1}$$ 2 , 1 -norm penalty on the waveform matrix to promote the sparsity of the array. To solve the resultant non-smooth and non-convex problem, we develop a modified alternating directions method of multipliers, where a surrogate subproblem over primal variables is solved instead of the original problem, and its local convergence is analyzed. Finally, numerical experiments demonstrate the effectiveness and superiority of the proposed method over counterparts, especially obtaining the lowest sidelobe level and deeper spectral nulls using much fewer antennas.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3