Model-based optimal action selection for Dyna-Q reverberation suppression cognitive sonar

Author:

Fu Yubin,Ma Xiaochuan,Feng Chao,Pei Xingxuan,Li Pengzhuo

Abstract

AbstractThe Doppler shift of low-speed targets is frequently disturbed by the reverberation Doppler spread clutter under the shallow sea. The clutter is generated by underwater scatterers, which increases the difficulty of Doppler estimation. To solve this problem, a reverberation target resolution function based on the Doppler spread clutter statistical model is proposed in this paper. Through the width of reverberation Doppler clutter, this function adjusts the waveform parameters by determining whether the target is discriminable. In addition, the reverberation Doppler spread clutter is time-spatial varying and affected by grazing angle, waves, wind speed, fish and other effects. Thus, the sonar waveform parameters need to be adjusted constantly. Therefore, this paper combines the cognitive sonar based on reinforcement learning with the reverberation target resolution function to evaluate different waveforms in different environments. Consequently, the sonar can adjust the waveform parameters in real-time and obtain the optimal waveform in different environments. Meanwhile, in this paper, the action selection strategy of Dyna-Q reinforcement learning is optimized, and the model-based maximum action selection Dyna-Q algorithm (Dyna-Q-Max-Action) is proposed. Compared with the traditional Dyna-Q and Q-learning algorithms, the proposed algorithm needs fewer episodes. Finally, numerical simulation verified the effectiveness of the proposed algorithm.

Funder

the Deep Sea Observation Project

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3