Abstract
AbstractSignal design is an important component for good performance of radar systems. Here, the problem of determining a good radar signal with the objective of minimizing autocorrelation sidelobes is addressed, and the first comprehensive comparison of a range of signals proposed in the literature is conducted. The search is restricted to a set of nonlinear, frequency-modulated signals whose frequency function is monotonically nondecreasing and antisymmetric about the temporal midpoint. This set includes many signals designed for smaller sidelobes including our proposed odd polynomial frequency signal (OPFS) model and antisymmetric time exponentiated frequency modulated (ATEFM) signal model. The signal design is optimized based on autocorrelation sidelobe levels with constraints on the autocorrelation mainlobe width and leakage of energy outside the allowed bandwidth, and we compare our optimized design with the best signal found from parameterized signal model classes in the literature. The quality of the overall best such signal is assessed through comparison to performance of a large number of randomly generated signals from within the search space. From this analysis, it is found that the OPFS model proposed in this paper outperforms all other contenders for most combinations of the objective functions and is expected to be better than nearly all signals within the entire search set.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. C. E. Cook, A class of nonlinear fm pulse compression signals. Proc. IEEE. 52:, 1369–71 (1964). https://doi.org/10.1109/PROC.1964.3393.
2. R. Price, in Proc. of URSI National Radio Science Meeting. Chebyshev low pulse compression sidelobes via a nonlinear fm (Seattle, 1979).
3. N. Levanon, E. Mozeson, Radar Signals (Wiley-IEEE Press, 2004). http://books.google.com/books?id=l_2lHI9fVHUC. Accessed 13 Dec 2019.
4. H. Meikle, Modern Radar Systems - Second edition (Artech House Publishers, Norwood, 2008).
5. T. Collins, P. Atkins, Nonlinear frequency modulation chirps for active sonar. IEE Proc. Radar Sonar Navig.146:, 312–316 (1999). https://doi.org/10.1049/ip-rsn:19990754.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献