Classification of audio signals using spectrogram surfaces and extrinsic distortion measures

Author:

Levy JeremyORCID,Naitsat Alexander,Zeevi Yehoshua Y.

Abstract

AbstractRepresentation of one-dimensional (1D) signals as surfaces and higher-dimensional manifolds reveals geometric structures that can enhance assessment of signal similarity and classification of large sets of signals. Motivated by this observation, we propose a novel robust algorithm for extraction of geometric features, by mapping the obtained geometric objects into a reference domain. This yields a set of highly descriptive features that are instrumental in feature engineering and in analysis of 1D signals. Two examples illustrate applications of our approach to well-structured audio signals: Lung sounds were chosen because of the interest in respiratory pathologies caused by the coronavirus and environmental conditions; accent detection was selected as a challenging speech analysis problem. Our approach outperformed baseline models under all measured metrics. It can be further extended by considering higher-dimensional distortion measures. We provide access to the code for those who are interested in other applications and different setups (Code: https://github.com/jeremy-levy/Classification-of-audio-signals-using-spectrogram-surfaces-and-extrinsic-distortion-measures).

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genre Classification of Movie Trailers using Spectrogram Analysis and Machine Learning;2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom);2024-06-24

2. Constrained Synthetic Sampling for Augmentation of Crackle Lung Sounds;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3