Learning spatial regularized correlation filters with response consistency and distractor repression for UAV tracking

Author:

Zhang WeiORCID

Abstract

AbstractCorrelation filter-based trackers have made significant progress in visual object tracking for various types of unmanned aerial vehicle (UAV) applications due to their promising performance and efficiency. However, the boundary effect remains a challenging problem. Several methods enlarge search areas to handle this shortcoming but introduce more background noise, and the filter is prone to learn from distractors. To address this issue, we present spatial regularized correlation filters with response consistency and distractor repression. Specifically, a temporal constraint is introduced to reinforce the consistency across frames by minimizing the difference between consecutive correlation response maps. A dynamic spatial constraint is also integrated by exploiting the local maximum points of the correlation response produced during the detection phase to mitigate the interference from background distractions. The proposed appearance model can optimize the temporal and spatial constraints together with a spatial regularization weight simultaneously. Meanwhile, the proposed appearance model can be solved effectively based on the alternating direction method of multipliers algorithm. The spatial and temporal information concealed in the response maps is fully taken into consideration to boost overall tracking performance. Extensive experiments are conducted on a public UAV benchmark dataset with 123 challenging sequences. The experimental results and analysis demonstrate that the proposed method outperforms 12 state-of-the-art trackers in terms of both accuracy and robustness while efficiently operating in real time.

Funder

Natural Science Foundation of Shaanxi Provincial Department of Education

Key Research and Development Projects of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3