Author:
Brauer Heather Ann,Libby Tanya E,Mitchell Breeana L,Li Lin,Chen Chu,Randolph Timothy W,Yasui Yutaka Y,Lampe Johanna W,Lampe Paul D
Abstract
Abstract
Background
Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-S-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation in vivo.
Methods
We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different GSTM1 genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data.
Results
After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their GSTM1 genotype (i.e., GSTM1+ or GSTM1- null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 m/z and 9565 m/z were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively.
Conclusions
Cruciferous vegetable intake in GSTM1+ individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the GSTM1-genotype modulates the physiological response to cruciferous vegetable intake.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Reference36 articles.
1. Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA: Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev. 1996, 5 (9): 733-748.
2. Fowke JH, Morrow JD, Motley S, Bostick RM, Ness RM: Brassica vegetable consumption reduces urinary F2-isoprostane levels independent of micronutrient intake. Carcinogenesis. 2006, 27 (10): 2096-2102. 10.1093/carcin/bgl065.
3. Verhagen H, Poulsen HE, Loft S, van Poppel G, Willems MI, van Bladeren PJ: Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis. 1995, 16 (4): 969-970. 10.1093/carcin/16.4.969.
4. Chiao JW, Wu H, Ramaswamy G, Conaway CC, Chung FL, Wang L, Liu D: Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis. 2004, 25 (8): 1403-1408. 10.1093/carcin/bgh136.
5. Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV: Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis. 2003, 24 (10): 1665-1670. 10.1093/carcin/bgg123.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献