Diagnostic biomarker kinetics: how brain-derived biomarkers distribute through the human body, and how this affects their diagnostic significance: the case of S100B

Author:

Murcko Robert,Marchi Nicola,Bailey Damian,Janigro Damir

Abstract

AbstractBlood biomarkers of neurological diseases are often employed to rule out or confirm the presence of significant intracranial or cerebrovascular pathology or for the differential diagnosis of conditions with similar presentations (e.g., hemorrhagic vs. embolic stroke). More widespread utilization of biomarkers related to brain health is hampered by our incomplete understanding of the kinetic properties, release patterns, and excretion of molecules derived from the brain. This is, in particular, true for S100B, an astrocyte-derived protein released across the blood–brain barrier (BBB). We developed an open-source pharmacokinetic computer model that allows investigations of biomarker’s movement across the body, the sources of biomarker’s release, and its elimination. This model was derived from a general in silico model of drug pharmacokinetics adapted for protein biomarkers. We improved the model’s predictive value by adding realistic blood flow values, organ levels of S100B, lymphatic and glymphatic circulation, and glomerular filtration for excretion in urine. Three key variables control biomarker levels in blood or saliva: blood–brain barrier permeability, the S100B partition into peripheral organs, and the cellular levels of S100B in astrocytes. A small contribution to steady-state levels of glymphatic drainage was also observed; this mechanism also contributed to the uptake of organs of circulating S100B. This open-source model can also mimic the kinetic behavior of other markers, such as GFAP or NF-L. Our results show that S100B, after uptake by various organs from the systemic circulation, can be released back into systemic fluids at levels that do not significantly affect the clinical significance of venous blood or salivary levels after an episode of BBB disruption.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3