Author:
Julku Ulrika,Xiong Mengfei,Wik Elin,Roshanbin Sahar,Sehlin Dag,Syvänen Stina
Abstract
Abstract
Background
Treatment with amyloid-β (Aβ) targeting antibodies is a promising approach to remove Aβ brain pathology in Alzheimer's disease (AD) and possibly even slow down or stop progression of the disease. One of the main challenges of brain immunotherapy is the restricted delivery of antibodies to the brain. However, bispecific antibodies that utilize the transferrin receptor (TfR) as a shuttle for transport across the blood–brain barrier (BBB) can access the brain better than traditional monospecific antibodies. Previous studies have shown that bispecific Aβ targeting antibodies have higher brain distribution, and can remove Aβ pathology more efficiently than monospecific antibodies. Yet, there is only limited information available on brain pharmacokinetics, especially regarding differences between mono- and bispecific antibodies.
Methods
The aim of the study was to compare brain pharmacokinetics of Aβ-targeting monospecific mAb3D6 and its bispecific version mAb3D6-scFv8D3 that also targets TfR. High cut-off microdialysis was used to measure intravenously injected radiolabelled mAb3D6 and mAb3D6-scFv8D3 antibodies in the interstitial fluid (ISF) of hippocampus in wild-type mice and the AppNL−G−F mouse model of AD. Distribution of the antibodies in the brain and the peripheral tissue was examined by ex vivo autoradiography and biodistribution studies.
Results
Brain concentrations of the bispecific antibody were elevated compared to the monospecific antibody in the hippocampal ISF measured by microdialysis and in the brain tissue at 4–6 h after an intravenous injection. The concentration of the bispecific antibody was approximately twofold higher in the ISF dialysate compared to the concentration of monospecific antibody and eightfold higher in brain tissue 6 h post-injection. The ISF dialysate concentrations for both antibodies were similar in both wild-type and AppNL−G−F mice 24 h post-injection, although the total brain tissue concentration of the bispecific antibody was higher than that of the monospecific antibody at this time point. Some accumulation of radioactivity around the probe area was observed especially for the monospecific antibody indicating that the probe compromised the BBB to some extent at the probe insertion site.
Conclusion
The BBB-penetrating bispecific antibody displayed higher ISF concentrations than the monospecific antibody. The concentration difference between the two antibodies was even larger in the whole brain than in the ISF. Further, the bispecific antibody, but not the monospecific antibody, displayed higher total brain concentrations than ISF concentrations, indicating association to brain tissue.
Funder
Åhlénstiftelsen
Gun och Bertil Stohnes Stiftelse
Magnus Bergvalls Stiftelse
Stiftelsen för Gamla Tjänarinnor
Vetenskapsrådet
VINNOVA
Hjärnfonden
Alzheimerfonden
Torsten Söderbergs Stiftelse
Åke Wiberg Stiftelse
EU Innovative Medicines Initiative 2
Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse
Parkinsonfonden
Uppsala University
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献