Gait apraxia evaluation in normal pressure hydrocephalus using inertial sensors. Clinical correlates, ventriculoperitoneal shunt outcomes, and tap-test predictive capacity

Author:

Ferrari Alberto,Milletti David,Palumbo Pierpaolo,Giannini Giulia,Cevoli Sabina,Magelli Elena,Albini-Riccioli Luca,Mantovani Paolo,Cortelli Pietro,Chiari Lorenzo,Palandri Giorgio

Abstract

Abstract Background Idiopathic normal pressure hydrocephalus (iNPH) is a neurological condition with gait apraxia signs from its early manifestation. Ventriculoperitoneal shunt (VPS) is a surgical procedure available for treatment. The Cerebrospinal fluid Tap Test (CSF-TT) is a quick test used as selection criterion for VPS treatment. Its predictive capacity for VPS outcomes is still sub judice. This study is aimed to test the hypothesis that wearable motion sensors provide valid measures to manage iNPH patients with gait apraxia. Methods Forty-two participants of the Bologna PRO-Hydro observational cohort study were included in the analyses. The participants performed the Timed Up and Go (TUG) and the 18 m walking test (18mW) with inertial sensors at baseline, three days after the CSF-TT, and six months after VPS. 21 instrumental variables described gait and postural transitions from TUG and 18mW recordings. Furthermore, participants were clinically assessed with scales (clinical variables). We tested the hypothesis by analysing the concurrent validity of instrumental and clinical variables, their individual- and group-level responsiveness to VPS, and their predictive validity for VPS outcomes after CSF-TT. Results The instrumental variables showed moderate to high correlation with the clinical variables. After VPS, most clinical and instrumental variables showed statistically significant improvements that reflect a reduction of apraxic features of gait. Most instrumental variables, but only one clinical variable (i.e., Tinetti POMA), had predictive value for VPS outcomes (significant adjusted R2 in the range 0.12–0.70). Conclusions These results confirm that wearable inertial sensors may represent a valid tool to complement clinical evaluation for iNPH assessment and prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3