Extracranial versus intracranial hydro-hemodynamics during aging: a PC-MRI pilot cross-sectional study

Author:

Lokossou ArmelleORCID,Metanbou Serge,Gondry-Jouet Catherine,Balédent Olivier

Abstract

Abstract Background Both aging and changes in blood flow velocity between the extracranial (intraspinal) and intracranial regions of cerebral vessels have an impact on brain hydro-hemodynamics. Arterial and venous cerebral blood flows interact with cerebrospinal fluid (CSF) in the both the cranial and spinal systems. Studies suggest that increased blood and CSF flow pulsatility plays an important role in certain neurological diseases. Here, we investigated the changes in blood-CSF flow pulsatility in the cranial and spinal systems with age as well as the impact of the intracranial compartment on flow patterns. Method Phase-contrast magnetic resonance imaging (PC-MRI) was performed in 16 young and 19 elderly healthy volunteers to measure the flows of CSF and blood. CSF stroke volume (SV), blood SV, and arterial and venous pulsatility indexes (PIs) were assessed at intra- and extracranial levels in both samples. Correlations between ventricular and spinal CSF flow, and between blood and CSF flow during aging were also assessed. Results There was a significant decrease in arterial cerebral blood flow and intracranial venous cerebral blood flow with aging. We also found a significant increase of intracranial blood SV, spinal CSF SV and arterial/venous pulsatility indexes with aging. In regard to intracranial compartment impact, arterial and venous PIs decreased significantly at intracranial level in elderly volunteers, while young adults exhibited decrease in venous PI only. Intracranial venous PI was paradoxically lower than extracranial venous PI, regardless of age. In both sample groups, spinal CSF SV and aqueductal CSF SV were positively correlated, and so were extracranial blood and spinal CSF SVs. Conclusion The study demonstrates that aging changes blood flow but preserves blood and CSF interactions. We also showed that many parameters related to blood and CSF flows differ between young and elderly adults.

Funder

University of Picardie Jules Vernes

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3