Inhibition of transforming growth factor beta signaling pathway promotes differentiation of human induced pluripotent stem cell-derived brain microvascular endothelial-like cells

Author:

Yamashita Misaki,Aoki Hiromasa,Hashita Tadahiro,Iwao Takahiro,Matsunaga TamihideORCID

Abstract

Abstract Background The blood–brain barrier (BBB) plays an important role as a biological barrier by regulating molecular transport between circulating blood and the brain parenchyma. In drug development, the accurate evaluation of BBB permeability is essential to predict not only the efficacy but also the safety of drugs. Recently, brain microvascular endothelial-like cells derived from human induced pluripotent stem cells (iPSCs) have attracted much attention. However, the differentiation protocol has not been optimized, and the enhancement of iPSC-derived brain microvascular endothelial-like cells (iBMELCs) function is required to develop highly functional BBB models for pharmaceutical research. Thus, we attempted to improve the functions of differentiated iBMELCs and develop a versatile BBB model by modulating TGF-β signaling pathway without implementing complex techniques such as co-culture systems. Methods iPSCs were differentiated into iBMELCs, and TGF-β inhibitor was used in the late stage of differentiation. To investigate the effect of TGF-β on freezing–thawing, iBMELCs were frozen for 60–90 min or 1 month. The barrier integrity of iBMELCs was evaluated by transendothelial electrical resistance (TEER) values and permeability of Lucifer yellow. Characterization of iBMELCs was conducted by RT-qPCR, immunofluorescence analysis, vascular tube formation assay, and acetylated LDL uptake assay. Functions of efflux transporters were defined by intracellular accumulation of the substrates. Results When we added a TGF-β inhibitor during iBMELCs differentiation, expression of the vascular endothelial cell marker was increased and blood vessel-like structure formation was enhanced. Furthermore, TEER values were remarkably increased in three iPSC lines. Additionally, it was revealed that TGF-β pathway inhibition suppressed the damage caused by the freezing–thawing of iBMELCs. Conclusion We succeeded in significantly enhancing the function and endothelial characteristics of iBMELCs by adding a small molecular compound, a TGF-β inhibitor. Moreover, the iBMELCs could maintain high barrier function even after freezing–thawing. Taken together, these results suggest that TGF-β pathway inhibition may be useful for developing iPSC-derived in vitro BBB models for further pharmaceutical research.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3