Quantitative analysis of macroscopic solute transport in the murine brain

Author:

Ray Lori A.,Pike Martin,Simon Matthew,Iliff Jeffrey J.,Heys Jeffrey J.

Abstract

Abstract Background Understanding molecular transport in the brain is critical to care and prevention of neurological disease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be compared to known diffusive rates of tracers. Methods In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivities ($$D_{eff}$$ D eff ), a transport parameter combining all mechanisms of transport, that best represent the experimental data are determined and compared to apparent diffusivity ($$D_{app}$$ D app ), the known rate of diffusion through brain tissue, to draw conclusions about dominant transport mechanisms in each region. Results In the perivascular regions of major arteries, $$D_{eff}$$ D eff for gadoteridol (550 Da) was over 10,000 times greater than $$D_{app}$$ D app . In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, $$D_{eff}$$ D eff was 10–25 times greater than $$D_{app}$$ D app . Conclusions The analysis concludes that convection is present throughout the brain. Convection is dominant in the perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this work supports perivascular convection along penetrating blood vessels.

Funder

national science foundation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3