Transcriptomic analysis of a 3D blood–brain barrier model exposed to disturbed fluid flow

Author:

Bouhrira Nesrine,DeOre Brandon J.,Tran Kiet A.,Galie Peter A.

Abstract

AbstractCerebral aneurysms are more likely to form at bifurcations in the vasculature, where disturbed fluid is prevalent due to flow separation at sufficiently high Reynolds numbers. While previous studies have demonstrated that altered shear stress exerted by disturbed flow disrupts endothelial tight junctions, less is known about how these flow regimes alter gene expression in endothelial cells lining the blood–brain barrier. Specifically, the effect of disturbed flow on expression of genes associated with cell–cell and cell–matrix interaction, which likely mediate aneurysm formation, remains unclear. RNA sequencing of immortalized cerebral endothelial cells isolated from the lumen of a 3D blood–brain barrier model reveals distinct transcriptional changes in vessels exposed to fully developed and disturbed flow profiles applied by both steady and physiological waveforms. Differential gene expression, validated by qRT-PCR and western blotting, reveals that lumican, a small leucine-rich proteoglycan, is the most significantly downregulated gene in endothelial cells exposed to steady, disturbed flow. Knocking down lumican expression reduces barrier function in the presence of steady, fully developed flow. Moreover, adding purified lumican into the hydrogel of the 3D blood–brain barrier model recovers barrier function in the region exposed to fully developed flow. Overall, these findings emphasize the importance of flow regimes exhibiting spatial and temporal heterogeneous shear stress profiles on cell–matrix interaction in endothelial cells lining the blood–brain barrier, while also identifying lumican as a contributor to the formation and maintenance of an intact barrier.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3