Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models

Author:

Chung Tracy D.,Linville Raleigh M.,Guo Zhaobin,Ye Robert,Jha Ria,Grifno Gabrielle N.,Searson Peter C.ORCID

Abstract

AbstractOxidative stress is a shared pathology of neurodegenerative disease and brain injuries, and is derived from perturbations to normal cell processes by aging or environmental factors such as UV exposure and air pollution. As oxidative cues are often present in systemic circulation, the blood–brain barrier (BBB) plays a key role in mediating the effect of these cues on brain dysfunction. Therefore, oxidative damage and disruption of the BBB is an emergent focus of neurodegenerative disease etiology and progression. We assessed barrier dysfunction in response to chronic and acute oxidative stress in 2D and 3D in vitro models of the BBB with human iPSC-derived brain microvascular endothelial-like cells (iBMECs). We first established doses of hydrogen peroxide to induce chronic damage (modeling aging and neurodegenerative disease) and acute damage (modeling the response to traumatic brain injury) by assessing barrier function via transendothelial electrical resistance in 2D iBMEC monolayers and permeability and monolayer integrity in 3D tissue-engineered iBMEC microvessels. Following application of these chronic and acute doses in our in vitro models, we found local, discrete structural changes were the most prevalent responses (rather than global barrier loss). Additionally, we validated unique functional changes in response to oxidative stress, including dysfunctional cell turnover dynamics and immune cell adhesion that were consistent with changes in gene expression.

Funder

National Institutes of Health

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

Reference92 articles.

1. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.

2. Xian D, Song J, Yang L, Xiong X, Lai R, Zhong J. Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxid Med Cell Longev. 2019;2019:1–14.

3. Martínez-Reyes I. Cuezva JM (2014) The H+-ATP synthase: a gate to ROS-mediated cell death or cell survival. Biochim Biophys Acta. 1837;7:1099–112.

4. Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66(2):121–7.

5. Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell. 2002;1(2):117–23.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3