Predicting Master’s students’ academic performance: an empirical study in Germany

Author:

Alturki SarahORCID,Cohausz Lea,Stuckenschmidt Heiner

Abstract

AbstractThe tremendous growth in electronic educational data creates the need to have meaningful information extracted from it. Educational Data Mining (EDM) is an exciting research area that can reveal valuable knowledge from educational databases. This knowledge can be used for many purposes, including identifying dropouts or weak students who need special attention and discovering extraordinary students who can be offered lifetime opportunities. Although former studies in EDM used an extensive range of features for predicting students’ academic achievement (in terms of (i) achieved grades or (ii) passing and failing), those features are sometimes not obtainable for practical usage, and therefore, the prediction models are not feasible for employment. This study uses data mining (DM) algorithms to predict the academic performance of master’ s students by using a non-extensive data set and including only the features that are easy to collect at the beginning of a studying program. To perform this study, we have collected over 700 students' records from 2010 to 2018 from the Faculty of Business Informatics and Mathematics at the University of Mannheim in Germany. Those records include demographics and post-enrollment features such as semester grades. The empirical results show the following: (i) the most significant features for predicting students' academic achievements are the students’ grades in each semester (importance rate between 14 and 36%), followed by the distance from students’ accommodation to university (importance rate between 6 and 18%) and culture (importance rate between 7 and 17%). On the other hand, gender, age, the numbers of failed courses, and the number of registered and unregistered exams per semester are less significant for the predictions. (ii) As expected, predictions performed after the second semester is more accurate than those performed after the first semester. (iii) Unsurprisingly, models that predict two classes yield better results than those that predict three. (iv) Random Forest classifier performs the best in all prediction models (0.77–0.94 accuracy), and using oversampling methods to deal with imbalanced data can significantly improve the performance of DM methods. For future work, we recommend testing the predictive models on other master programs and a larger datasets. Furthermore, we recommend investigating other oversampling approaches.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Reference46 articles.

1. Abu, L. M. Z. (2019). Prediction of student’s performance by modelling small dataset size. International Journal of Educational Technology in Higher Education, 16(1), 1–18. https://doi.org/10.1186/S41239-019-0160-3/FIGURES/13

2. Ajjawi, R., Dracup, M., Zacharias, N., Bennett, S., & Boud, D. (2020). Persisting students’ explanations of and emotional responses to academic failure. Higher Education Research and Development, 39(2), 185–199. https://doi.org/10.1080/07294360.2019.1664999

3. Alemu, Y. M. (2015). Application of data mining techniques for student success and failure prediction (the case of Debre_Markos University). International Journal of Scientific and Technology Research, 4(04), 666.

4. Alturki, S., & Alturki, N. (2021). Using educational data mining to predict Students’ academic performance for applying early interventions. Journal of Information Technology Education: Innovations in Practice, 20, 121–137.

5. Alturki, S., Hulpus, I., & Stuckenschmidt, H. (2020). Predicting academic outcomes: A survey from 2007 till 2018. Technology, Knowledge and Learning. https://doi.org/10.1007/s10758-020-09476-0

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3