Exploring knowledge graphs for the identification of concept prerequisites

Author:

Manrique RubénORCID,Pereira Bernardo,Mariño Olga

Abstract

AbstractLearning basic concepts before complex ones is a natural form of learning. Automated systems and instructional designers evaluate and order concepts’ complexity to successfully generate and recommend or adapt learning paths. This paper addresses the specific challenge of accurately and adequately identifying concept prerequisites using semantic web technologies for a basic understanding of a particular concept within the context of learning: given a target concept c, the goals are to (a) find candidate concepts that serve as possible prerequisite for c; and, (b) evaluate the prerequisite relation between the target and candidates concepts via a supervised learning model. Our four step approach consists of (i) an exploration of Knowledge Graphs in order to identify possible candidate concepts; (ii) the creation of a set of potential concepts; (iii) deployment of supervised learning model to evaluate a proposed list of prerequisite relationships regarding the target set; and, (iv) validation of our approaching using a ground truth of 80 concepts from different domains (with a precision varying between 76% and 96%).

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Reference25 articles.

1. Adorni, G., Alzetta, C., Koceva, F., Passalacqua, S., Torre, I. (2019). Artificial Intelligence in Education. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (Eds.)Springer, Cham, (pp. 1–13).

2. Changuel, S., Labroche, N., Bouchon-Meunier, B. (2015). Resources sequencing using automatic prerequisite–outcome annotation. ACM Trans. Intell. Syst. Technol., 6(1), 6–1630. https://doi.org/10.1145/2505349.

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002). Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1), 321–357.

4. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. https://doi.org/10.1145/2939672.2939785. http://doi.acm.org/10.1145/2939672.2939785. ACM, New York, (pp. 785–794).

5. Cimiano, P., & Völker, J. (2005) In Montoyo, A., Muńoz, R., Métais, E. (Eds.), Text2Onto, (pp. 227–238). Berlin, Heidelberg: Springer.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3