1. Adorni, G., Alzetta, C., Koceva, F., Passalacqua, S., Torre, I. (2019). Artificial Intelligence in Education. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (Eds.)Springer, Cham, (pp. 1–13).
2. Changuel, S., Labroche, N., Bouchon-Meunier, B. (2015). Resources sequencing using automatic prerequisite–outcome annotation. ACM Trans. Intell. Syst. Technol., 6(1), 6–1630. https://doi.org/10.1145/2505349.
3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002). Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1), 321–357.
4. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. https://doi.org/10.1145/2939672.2939785. http://doi.acm.org/10.1145/2939672.2939785. ACM, New York, (pp. 785–794).
5. Cimiano, P., & Völker, J. (2005) In Montoyo, A., Muńoz, R., Métais, E. (Eds.), Text2Onto, (pp. 227–238). Berlin, Heidelberg: Springer.